Massachusetts Institute of Technology

Diagnosing Over-subscribed Temporal Problems

16.412, February 25th, 2015

Peng Yu

Model-based Embedded & Robotic Systems

Reminder

- Thought Exercise 2: – Due Friday 2/27.
- Assignment 2:
 - Due Friday 3/13.
- Reading:

 Peng Yu and Brian Williams, Continuously Relaxing Overconstrained Conditional Temporal Problems through Generalized Conflict Learning and Resolution, In Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence (IJCAI-2013), August 2013.

The Problem

- We human beings tend to ask for more than what we can do.
- Hence our study plans, working schedules, and travel itineraries are often over-subscribed.
 - 'I want to go to the theater and watch a movie on Friday.'
 - 'Sorry, you cannot do it because you have to complete the thought exercise for 16.412 first. It will keep you busy until 11:59pm. '

This Lecture

- Detect and resolve such over-subscription, using what we learned in Monday's lecture.
 - The model-based diagnosis methods can be applies to diagnose our travel plans.
 - The 'failure modes' are alternative goals (goal relaxation) that repair the broken plan.
- This lecture focuses on the diagnosis of temporal problems, which is widely used for modeling real world scheduling problems.

Build Your Own Travel Advisor

This Lecture

- Conflict Detection
- Discrete Relaxation
- Continuous Relaxation
- Integrate Everything Together

Detecting Conflicts in Temporal Problems

'Explain the cause of failure'

Review: Temporal Plan Network

- Augmented from Simple Temporal Networks.
 - Addition of decision nodes.
 - Rewards/costs.

Review: Solve a TPN

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency.
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency.
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency.
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency. Not consistent!
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency.
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

- To find the most preferred/least cost plan.
 - Generate the best candidate.
 - Check temporal consistency. Not consistent!
 - Return solution (if candidate consistent) or start over (generate the next best candidate).

Explain Cause of Failure

- Similar to hardware diagnoses problem, we use conflicts to explain the cause of infeasibility.
 - Conflict 1: Fly to both 'gas station' and 'restaurant'
 - Conflict 2: Fly to 'restaurant' directly
- However, this discrete representation does not preserve useful **temporal** information.
- More often, we use **Continuous Conflict** to describe the conflicts in temporal problems.

Discrete and Continuous Conflicts

• Continuous conflict: a set of temporal constraints that results in a negative cycle.

{Fly:[2,2], Fly:[4,4], Arrival[0,3]}

Discrete and Continuous Conflicts

• More specifically, we can represent a continuous conflict as a linear expression.

• The more information we encode in the conflict, the more options we have while repairing the problems.

Exercise

• How many conflicts does this STN have?

Model-based Embedde

ohotic System

Exercise

• How many conflicts does this STN have?

$$C_{4UB} - C_{1LB} - C_{2LB} = -5$$

$$C_{5UB} - C_{3LB} - C_{2LB} = -5$$

$$C_{6UB} - C_{3LB} - C_{2LB} - C_{1LB} = -5$$

Massachusetts Institute of Technology

Model-based Embedde

ohotic System

What's next?

- Return the conflicts to the user.
- Let the user figure out the problem and input a new set of requirements.
- OR
- "I have a feasible plan if you skip all stops."
- "If you relax your arrival constraint by only 2 minutes, I can find a solution for you."

Discrete Relaxations for Temporal Problems

'Repair broken problems through suspending constraints'

Problem Statement: Input

- Temporal Constraint Relaxation Problems:
 - Events.

Ξ\Ξ

- With different time of occurrence.
- Constraints.
 - Base: C1, C3.
 - Relaxable: C2, C4, C5, C6.

Problem Statement: Preferences

• Discrete relaxation cost:

$$f: C_i \rightarrow \mathbb{R}$$

- Activated when constraints are suspended.
 - Suspend C2: Cost 2.
 - Suspend C4, C6: Cost 10.

Output: Minimal relaxation

- Relaxation:
 - A set of relaxed constraints that resolve the inconsistency of over constrained temporal problems.
 - Suspending C4, C5 and C6.
 - Suspending C2, C6.
 - Suspending C2.

- All supersets of a relaxation are valid relaxations, too.
- Minimal relaxation:
 - A valid relaxation.
 - None of its proper subsets are valid relaxations.
 - $\{C2=sus\}$ vs. $\{C2=sus, C6=sus\}$.

Best-First

• Cost of relaxations:

Ξ\Ξ

- Suspending constraints will incur costs:
- {C2=sus, C5=sus} (7) vs. {C2=sus, C4=sus} (6).
- Candidate relaxations with lower cost will be returned first.

Conflict-Directed

- A set of inconsistent active constraints.
 - C1=act,C2=act,C3=act,C6=act.
 - C1, C2, C3, C4, C5, C6.
 - C2, C3, C5.

- Minimal conflicts.
 - A conflict whose proper subsets are not in conflict.
 - C2=act, C3=act, C5=act.
 - C1=act, C2=act, C3=act, C6=act.
 - C1=act, C2=act, C4=act.

Conflicts and Relaxations

- Relaxing one constraint can resolve a minimal conflict.
 - Suspending C6 resolves {C1=act, C2=act, C3=act, C6=act}.

 A relaxation suspends at least one constraint in each minimal conflict (a covering set).

{C2=act, C3=act, C5=act} {C1=act, C2=act, C3=act, C6=act} {C1=act, C2=act, C4=act} {C2=sus, C1=sus, C4=sus} {C2=sus}

C₃ [10, 15]

D

C₂ [20, 30]

В

Enumerate Minimal Relaxations

Enumerate Minimal Relaxations ╵╴ C6-[0, 35] Q = {C2=sus},{C4=sus} C₅ [0, 25] C1 [10, 15] C2 [20, 30] C₃ [10, 15] в С C4 [0, 25] $\{C_{2}, C_{4}, C_{5}, C_{6}\}$ Check {C2=sus} - Test {C2=sus,C4=act,C5=act,C6=a $\{C_2, C_4, C_5\}$ $\{C_2, C_4, C_6\}$ $\{C_2, C_5, C_6\}$ $\{C_4, C_5, C_6\}$ **Ct**}. Consistent! $\{C_2, C_4\}$ $\{C_2, C_5\}$ $\{C_2, C_6\}$ $\{C_4, C_5\}$ $\{C_4, C_6\}$ $\{C_5, C_6\}$ All supersets of {C2=sus} are valid relaxations. {C₂} {C4} {C5} $\{C_6\}$

{}

Massachusetts Institute of Technology

Enumerate Minimal Relaxations

Massachusetts Institute of Technology

Problem With Discrete Relaxation

- Discrete relaxations often make modifications that are too aggressive to the problems.
 - 'Do not stop at the gas station or the restaurant'.

• Usually, we would expect better suggestions that do not make unnecessary changes, in order to minimize the perturbations to our goals.

Continuous Relaxations for Temporal Problems

'Repair broken problems through weakening constraints'

Discrete Relaxation

• Identify a minimal set of constraints that have to be dropped.

ĽE∖∃

Continuous relaxation

- Introduce slack variables and preference functions over the deviations of temporal bounds.
 - $-\Delta C_{1LB}, \Delta C_{1UB}, \Delta C_{2LB}, \Delta C_{2UB}, \dots$

• Given an over-constrained temporal problem, find the most preferred continuous relaxation.

Preferences

- We define linear cost functions over the deviations from the original temporal bounds.
 - ΔC_{1LB} : \$1/minutes; ΔC_{2LB} : \$1.5/minutes
 - Minimize(ΔC_{1LB} +1.5 ΔC_{2LB} + ΔC_{3LB} + ΔC_{4UB} +3 ΔC_{5UB} +3 ΔC_{5UB})

ミトミ

Approach – Generate and Test

- We take a generate and test approach.
 - The generator
 computes new
 continuous relaxations
 to resolve known
 conflicts.
- The **tester** checks the consistency of the relaxed problem, and extract new conflicts.

From Continuous Conflicts to Constraints

Α

 A conflict composes of an inconsistent set of temporal constraints, such as {C₁,C₂,C₄}.

• We reformulate the continuous conflicts into a set of linear inequalities.

 $\Delta C_{4UB} + \Delta C_{2LB} + \Delta C_{1LB} \ge 5$

"This is the minimal amount of deviation required to resolve this conflict."

Example – Test

Example – Generate Relaxation

Example – Test

Example – Generate Relaxation

Example – Incorporate User Response

- User: "No, C₂ should be at least 20."
- The user's input is recorded as a new continuous conflict.
- The generator recomputes the relaxation and asks the user again.

Summary

- Make trade-offs between constraints in the temporal problem (goals) to repair broken temporal problems.
- Detect and resolve over-subscription using modelbased diagnosis approach.
 - The diagnosis methods can be applies to diagnose inconsistent set of temporal constraints.
 - The 'failure modes' are alternative goals (goal relaxation) that repair the broken plan.

In the thought exercise

- Plan a trip to some points of interest in Boston, given some timing constraints.
- Please find the optimal trade-off between the mode of transportation and the time of arrival.

Massachusetts Institute of Technology

Integrate Relaxation with Decision Making

Relaxation as part of Decision Making

- We have been working with temporal problems without choices so far.
- For problems with choices, we make decisions and compute relaxations simultaneously
- While incorporate user responses on the fly
 - 'This cannot take that long'
 - 'I do not want to go to restaurant A any more'

Discrete and Continuous Relaxation

• We resolve a conflict using both continuous and discrete relaxations.

• The utility of the continuous relaxation is computed using the grounded solution of the lowest cost.

Procedure: Enumerate Minimal Relaxation

